Eigenvalues of Operators with Gaps
نویسندگان
چکیده
This paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential.
منابع مشابه
General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators
This paper is concerned with an extension and reinterpretation of previous results on the variational characterization of eigenvalues in gaps of the essential spectrum of self-adjoint operators. We state two general abstract results on the existence of eigenvalues in the gap and a continuation principle. Then, these results are applied to Dirac operators in order to characterize simultaneously ...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملEigenvalues in Spectral Gaps of Differential Operators
Spectral problems with band-gap spectral structure arise in numerous applications, including the study of crystalline structure and the determination of transmitted frequencies in photonic waveguides. Numerical discretization of these problems can result in spurious results, a phenomenon known as spectral pollution. We present a method for calculating eigenvalues in the gaps of self-adjoint ope...
متن کاملOn the eigenvalues of operators with gaps. Application to Dirac operators
This paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential.
متن کاملRelative Oscillation Theory for Dirac Operators
We develop relative oscillation theory for one-dimensional Dirac operators which, rather than measuring the spectrum of one single operator, measures the difference between the spectra of two different operators. This is done by replacing zeros of solutions of one operator by weighted zeros of Wronskians of solutions of two different operators. In particular, we show that a Sturm-type compariso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007